1 Empirical Inference

Figure 1.1: Left: Shortest path (in red) in an unweighted k-nearest neighbor graph on a random set of points. The
path is far from the straight line between the two end points. Middle and right: a toy data set (middle) and its Isomap
reconstruction based on the shortest path distance in the unweighted kNN graph. The reconstrution does not
preserve the density information of the original data set.

Random geometric graphs are built by first
sampling a set of points from some underlying
distribution, and then connecting each point to
its k nearest neighbors. In this project we inves-
tigated the behavior of distance functions on ran-
dom geometric graphs when the sample size n
goes to infinity (and the connectivity parameter
k scales appropriately).

It is well known that in graphs where the
edges are suitably weighted according to their
Euclidean lengths, the shortest path distance
converges to the underlying Euclidean distance.
However, it turned out this is not the case for
unweighted kNN graphs [461]. In this case, the
shortest path distance converges to a distance
function that is weighted by the underlying den-
sity and takes wide detours to avoid high density
regions (see left figure above). In machine learn-
ing applications, this behavior of the shortest
path distance can be highly misleading. As an
example, consider the Isomap algorithm and the
data set shown in the middle figure. If we build
an unweighted kNN graph based on this data and
apply Isomap to recover the point configuration,
we get the figure on the right. Obviously, it is
grossly distorted and cannot serve as a faithful
representation of the original data.

The commute distance (aka resistance dis-
tance) between vertex u and v is defined as the

expected time it takes the natural random walk
starting in vertex u to travel to vertex v and back.
It is widely used in machine learning because it
supposedly satisfies the following, highly desir-
able property: Vertices in the same cluster of the
graph have a small commute distance, whereas
vertices in different clusters of the graph have a
large commute distance to each other. We studied
the behavior of the commute distance as the num-
ber of vertices in the graph tends to infinity [599],
proving that the commute distance between two
points converges to a trivial quantity that only
takes into account the degree of the two vertices.
Hence, all information about cluster structure
gets lost when the graph is large enough.

To alleviate this shortcoming, we proposed
the family of p-resistances [497]. For p = 1 it
reduces to the shortest path distance, for p = 2
it coincides with the resistance distance, and for
p — oo it is related to the minimal s-t-cut in
the graph. The family shows an interesting phase
transition: there exist two critical thresholds p*
and p** such that if p < p*, then the p-resistance
depends on meaningful global properties of the
graph, whereas if p > p**, it only depends on
trivial local quantities and does not convey any
useful information. In particular, the p-resistance
for p = p* nicely reveals the cluster structure.

More information: https://ei.is.tuebingen.mpg.de/project/distance-functions-on-random-geometric- graphs
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