Automatic Estimation of Modulation Transfer Functions

Matthias Bauer^{1,2}, Valentin Volchkov¹, Michael Hirsch³, Bernhard Schölkopf^{1,3}

¹Max Planck Institute for Intelligent Systems, Tübingen, ²University of Cambridge, ³Amazon Research

Motivation

Lens Quality Assessment is expensive and time consuming...

simple/cheap	(complex/expensive
visual inspec- tion of images	 MTF test charts artificial stars 	wavefront sensorMTF test station
< qualitative		quantitative

- ... but every photographer has access to photographs captured with that lens
 - ► Photographs contain ample information about lens properties
 - ► This information is confounded with the statistics of the images
 - ► Lens properties are the same for different motives

The Modulation Transfer Function (MTF) is a standard measure for camera lens quality.

What is the Modulation Transfer Function?

The MTF characterises how contrast is diminished by optical aberrations (blur)

Our work: MTF Estimation from a Batch of Photos

- ► Estimate entire global MTF charts from a batch of photographs within minutes
- ► Good qualitative and quantitative agreement with photometric measurements

Neural Network for Local MTF Estimation

► DNN with convolutional residual blocks and

► To **treat multiple input patches**, compute the

feature representation separately and average

fully connected layers

them in feature space

► **The Point Spread Function (PSF)** characterises the local blur and is spatially varying across the field of view. It is related to the MTF by a Fourier Transformation:

 $\mathsf{PSF}(x) \xrightarrow{\mathcal{FT}} \mathsf{OTF}(f) \propto \mathsf{MTF}(f) e^{i \mathsf{PhTF}(f)}$

► **Global MTF charts** summarise the MTF for fixed frequencies (10 cy/mm, 20 cy/mm, etc.) over the entire field of view and are typically provided by manufacturers.

The MTF is measured locally in radial and tangential direction

Ground Truth PSF/MTF Measurements

► Custom-built *pinhole array* of $2 \text{ m} \times 1.5 \text{ m}$ to record the point spread function (PSF) at $80 \times 60 = 4800$ locations over the entire field of view

- **Inputs**: $192 \times 192 \times 1$ image patches
- ► **Outputs**: MTF10, MTF20, MTF30, MTF40 (tangential and radial)
- ► Initial data processing: Rotation, image gradient, subsampling into channels

Experimental Results

Results for a regular pattern [Joshi2008]

- Estimates from synthetically blurred patches are almost perfect (for all lenses)
- Very good quantitative and qualitative agreement (errors are similar for other lenses)

Results for photographs of natural scenes

The image of a point light source is a local measurement of PSF

Set up a Supervised Training Task

Inputs Synthetically blurred patches

MTF10, MTF20 MTF30, MTF40

Ground truth training and validation data

- regular patterns [Joshi2008]
- patches from photos in the wild
- ► real blurs from pinhole array
- ► artificial blurs (e.g. sum of Gaussian)

Comparison to other Methods

MTFs from state-of-the-art blind image deconvolution [Michaeli2014]

Photometric MTF measurements from test charts [Burns2000, Loebich2007]

azimuthal average	MTF10 radial	MTF10 tangential	MTF30 radial	MTF30 tangential
()r '			' <u> </u>	. T

► Typically, very good qualitative and good quantitative agreement

Limitations and explanation of discrepancies

Curvature of the focal plane. The PSF panel is completely flat, while natural scenes have depth variations; corners may appear sharper than PSF measurements **Not all patches are suitable.** Objects not in focus (e.g. protruding objects); homogeneous/texture-less areas (e.g. sky); edges in only one direction **Mitigation strategy.** Carefully select photos; *future work:* automatically select patches

Estimates improve with more images

References

[Burns2000] P. D. Burns. "Slanted-edge MTF for digital camera and scanner analysis" (PICS 2000)

