

Automatic Estimation of Modulation Transfer Functions

<u>Matthias Bauer</u>^{1,2}, Valentin Volchkov¹, Michael Hirsch³, Bernhard Schölkopf^{1,3} ¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of Cambridge, UK ³Amazon Research

May 5, 2018

Automatic Estimation of Modulation Transfer Functions

This project is joint work with

Valentin Volchkov

Michael Hirsch

Bernhard Schölkopf

• Lens quality is determined by **optical aberrations**

Optical aberrations are spatially varying

Optical aberrations are spatially varying

Optical aberrations can be characterised by the point spread function (PSF)

- Lens quality is determined by optical aberrations (spatially varying PSF)
- ► Related and normalised quality measure: Modulation Transfer Function (MTF)

What is the MTF?

MTF as normalised diminished relative contrast

$$C(f) = \frac{I_{\max}(f) - I_{\min}(f)}{I_{\max}(f) + I_{\min}(f)} \qquad \mathsf{MTF}(f) = \frac{\mathsf{C}(f)}{\mathsf{C}(0)} \in [0, 1]$$

MTF as normalised diminished relative contrast

$$C(f) = \frac{I_{\max}(f) - I_{\min}(f)}{I_{\max}(f) + I_{\min}(f)} \qquad \mathsf{MTF}(f) = \frac{C(f)}{C(0)} \in [0, 1]$$

MTF as Fourier Transform of the Point Spread Function

 $\mathsf{PSF}(x) \xrightarrow{\mathcal{FT}} \mathsf{OTF}(f) \propto \mathsf{MTF}(f) \mathrm{e}^{i \, \mathsf{PhTF}(f)}$

MTF as normalised diminished relative contrast

$$C(f) = \frac{I_{\max}(f) - I_{\min}(f)}{I_{\max}(f) + I_{\min}(f)} \qquad \mathsf{MTF}(f) = \frac{C(f)}{C(0)} \in [0, 1]$$

MTF as Fourier Transform of the Point Spread Function

$$\mathsf{PSF}(x) \xrightarrow{\mathcal{FT}} \mathsf{OTF}(f) \propto \mathsf{MTF}(f) \mathrm{e}^{i \operatorname{PhTF}(f)}$$

Global MTF Charts: Radial and Tangential MTF

 $r_{\rm max}$

radial

🗮 tangential

Global MTF Charts: Radial and Tangential MTF

MTF30

🗮 tangential 🚦 radial

____ MTF40

Lens manufacturers provide MTF charts

 $r_{\rm max}$

How good is your lens? Assessing performance with MTF full-field displays

BRANDON DUBE,^{1,2,*} ROGER CICALA,¹ AARON CLOSZ,¹ AND JANNICK P. ROLLAND²

- Large variability between different specimens of the same lens
- ► Lenses often surprisingly asymmetric

How good is your lens? Assessing performance with MTF full-field displays

BRANDON DUBE,^{1,2,*} ROGER CICALA,¹ AARON CLOSZ,¹ AND JANNICK P. ROLLAND²

- Large variability between different specimens of the same lens
- Lenses often surprisingly asymmetric

Want the MTF curve for a specific specimen of a lens

Photometric MTF measurements

pical techniques used for le	ns quality assessment	
simple/cheap		complex/expensive
 visual inspection of images 	► MTF test charts	 wavefront sensor professional MTF testing station
qualitative		quantitative

MTF test charts

- Several methods:
 - Slanted edge [Burns2000]
 - Dead leaves
 - Siemens stars [Loebich2007]
- ► DxO, imatest, Image Engineering, ...

Photometric MTF measurements

Typical techniques used for lens quality assessment

simple/cheap		complex/expensive
 visual inspection of images 	► MTF test charts	 wavefront sensor professional MTF testing station
qualitative		quantitative

MTF test charts

- Several methods:
 - Slanted edge [Burns2000]
 - Dead leaves
 - Siemens stars [Loebich2007]
- ► DxO, imatest, Image Engineering, ...

Lens quality assessment is laborious and requires equipment

Our approach: Estimate MTF blindly from photographs

This work: A learning system for MTF estimation from photographs

unprocessed photographs

global MTF chart

Our approach: Estimate MTF blindly from photographs

unprocessed photographs

global MTF chart

Distance from centre [mm]

- Photographs contain ample information about lens properties
- Information is confounded with image statistics of unknown scenes
- Lens properties are the same for different motives

Overview of our learning system

Overview of our learning system

 $u \mid v$

- Inputs: $192 \times 192 \times 1$ image patches
- **Outputs**: MTF10, MTF20, MTF30, MTF40 (tangential and radial)

- Inputs: $192 \times 192 \times 1$ image patches
- **Outputs**: MTF10, MTF20, MTF30, MTF40 (tangential and radial)

- ▶ Inputs: 192 × 192 × 1 image patches
- Outputs: MTF10, MTF20, MTF30, MTF40 (tangential and radial)
- ▶ Initial data processing: Rotation, image gradient, subsampling into channels

- ▶ Inputs: 192 × 192 × 1 image patches
- Outputs: MTF10, MTF20, MTF30, MTF40 (tangential and radial)
- ▶ Initial data processing: Rotation, image gradient, subsampling into channels
- ► DNN with convolutional residual blocks and fully connected layers

- ▶ Inputs: 192 × 192 × 1 image patches
- Outputs: MTF10, MTF20, MTF30, MTF40 (tangential and radial)
- ▶ Initial data processing: Rotation, image gradient, subsampling into channels
- ► DNN with convolutional residual blocks and fully connected layers
- Treat multiple input patches

Compute the intermediate feature representation separately and average them in feature space (similar to "Deep Sets" [Zaheer 2017])

Train the Local Estimation Network on synthetically blurred patches

Set up a supervised training task

Input: Synthetically blurred patches

Output: MTF values of the blur

Train the Local Estimation Network on synthetically blurred patches

Set up a supervised training task

Input: Synthetically blurred patches

Output: MTF values of the blur

Required training and validation data

Sharp image patches

- regular patterns [Joshi 2008]
- patches from photos in the wild

Lens blurs and their MTFs

 Record lens blurs with custom pinhole array

Record ground truth PSFs/MTFs using a self-made pinhole array

- ► Custom-built pinhole array to efficiently and accurately record PSFs
- Image of a point light source is the PSF
- Record $80 \times 60 = 4800$ PSFs per lens and setting over the entire field of view

New dataset of real PSFs for aberrated lenses

Experiments: Estimate MTF charts from three types of images

) Synthetically blurred patterns (same as training but with unseen blurs)

2 **Photographs of printouts** of the test pattern (similar to a test chart)

B) Photographs of natural scenes in the wild

All results for the same lens (Sigma 50mm f/1.4 EX DG HSM @ f/1.4)

(1 + 2) Results on the test pattern

(1 + (2)) Results on the test pattern

- > Estimation from synthetically blurred patches almost perfect (for all lenses)
- Very good quantitative and qualitative agreement
- Estimation errors for other lenses typically similar

Results on natural scenes

3 Results on natural scenes

- Very good qualitative agreement
- Good quantitative agreement

Limitations and discussion of discrepancies

Main sources of discrepancies

Curvature of the focal plane

the PSF panel is completely flat while real objects have depth variations

Limitations and discussion of discrepancies

Main sources of discrepancies

Curvature of the focal plane

the PSF panel is completely flat while real objects have depth variations

- ► Not all patches suitable
 - Objects not in focus
 - homogeneous/texture less areas (e.g. sky)
 - edges in only one direction

Limitations and discussion of discrepancies

Main sources of discrepancies

Curvature of the focal plane

the PSF panel is completely flat while real objects have depth variations

► Not all patches suitable

- Objects not in focus
- homogeneous/texture less areas (e.g. sky)
- edges in only one direction

Mitigation strategies

- ► So far: Select suitable photographs
- Future work/Production system: Automatic patch selection from photographs, similar to "Finding good regions to deblur images" [Hu 2012]

We present a system for MTF estimation from real photographs

- ▶ Estimate entire MTF charts from a batch of photographs within minutes
- Good qualitative and quantitative results
- New dataset of real PSFs from aberrated lenses (available on the project website soon)

https://ei.is.mpg.de/projects/mtf-estimation

Questions?

Questions? See you at the poster session!

Automatic Estimation of Modulation Transfer Functions

Matthias Bauer^{1,2}, Valentin Volchkov¹, Michael Hirsch³, Bernhard Schölkopf^{1,3} Max Planck Institute for Intelligent Systems, Tibingen, ²University of Cambridge, ³Amazon Research

Motivation

Lers Quality	Assessment is	_ but every photographer has ac	
expensiv	e and time consuming_	photographs captured with t	
simpleichesp	complex (expensive	 Photographs contain ample 	
signal imper-	FREFLEELCHARTS Faceworks service	 This information is confound	
tion of images	Facilities starts FMEFtest startion	the statistics of the images	
ovitation	QuartRative	Lens properties are the sam different motives	

The Modulation Transfer Function (MTF) is a standard measure for camera lens quality.

What is the Modulation Transfer Function?

The WTF characterises how contrast is diminished by optical aberrations (blue $MTP(f) = \frac{G(f)}{G(S)}; \quad G(f) = \frac{h_{min}(f) - h_{min}(f)}{h_{min}(f) + h_{min}(f)}$

The Point Spread Function (PSF) characterises the local blar and is spatially varying

PSF(a) 27. OTF(f) ~ MTF(f), (M.TT(f)

· Global MTF charts summarise the MTF for fixed frequencies (htt cy/mm, 20 cy/mm, etc.) over the entire field of view and are typically provided by manufacturers.

The MTF is measured locally in radial and tangential direction

Global coordinates (t, φ) indicate the patch location Local patch coordinates (u.v) denote the radial (a) and naction within a patch Sogital lines measure the tangential MTF (

Ground Truth PSF/MTF Measurements

80 × 60 = 4800 locations over the The image of a point light source is a

22

20.21

Set up a Supervised Training Task

Ground truth training and validation data

(2) Lons blurs · real blurs from pinhole array

Comparison to other Methods

Photometric MTF measurements from test charts [Burns2000, Loebich2007]

Our work: MTF Estimation from a Batch of Photos

 Existing a particle of shall MTE charts from a batch of obstage sites within minutes · Good qualitative and quantitative agreement with photometric measurements

Neural Network for Local MTF Estimation

 To treat multiple input patches, compute the · initial data processing Rotation, image gradient,

Experimental Results

Results for a regular pattern [Joshi2008]

 Estimates from sorthetically blurred patches are almost perfect (for all lenses) · Very good quantitative and qualitative agreement (errors are similar for other lenses)

Results for photographs of natural scenes

Carl Contraction	1	Section &		Calence has without
OT BEAR	Bargerta II sala 1	to chan 10 Sectors	E E /Jan 10	to day it
和社会部	Gri ana			A.

Typically very good qualitative and good quantitative agreement.

Limitations and explanation of discrepancies

Not all patches are suitable. Objects not in focus (e.g. protruding objects): geneous/texture-less areas (e.g. sky); edges in only one direction

Mitigation strategy. Carefully select photos; fature work: automatically select patches Estimates improve with more impress

Deferences

https://ei.is.mpg.de/projects/mtf-estimation bauer@tue.mpg.de

ICCP 2018

Appendix/Backup

Results improve with more data

- ► Increase the number of input patches from the same location but different images
- Patches are averaged in feature space

Treat multiple input patches

Comparison to other methods

Photometric measurements

State-of-the-art deblurring algorithm

Robustness to noise

Orientation of edges

Rotation angle α

Subsampling into channels

Before subsampling: 12 \times 12 \times 1

After subsampling: $4\times 4\times 9$