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Abstract— We propose to frame the problem of marker-less
robot arm pose estimation as a pixel-wise part classification

problem. As input, we use a depth image in which each pixel

is classified to be either from a particular robot part or the

background. The classifier is a random decision forest trained

on a large number of synthetically generated and labeled depth

images. From all the training samples ending up at a leaf node,

a set of offsets is learned that votes for relative joint positions.

Pooling these votes over all foreground pixels and subsequent

clustering gives us an estimate of the true joint positions.

Due to the intrinsic parallelism of pixel-wise classification, this

approach can run in super real-time and is more efficient

than previous ICP-like methods. We quantitatively evaluate

the accuracy of this approach on synthetic data. We also

demonstrate that the method produces accurate joint estimates

on real data despite being purely trained on synthetic data.

I. INTRODUCTION
Autonomous manipulation and grasping of objects is one

of the remaining key challenges within robotics. Tremendous
progress has been made in the area of data-driven grasp
synthesis in recent years. An extensive review of existing
approaches can be found in [2]. The majority of the current
methods tries to visually infer a grasp configuration which
is then executed in an open-loop manner. However, this de-
coupled perception-action scheme can lead to a poor success
rate in a real-world situation which may involve sensor noise,
inaccurate system models, state uncertainty or a dynamically
changing environment. There has been some work on closed-
loop execution where the current grasp configuration is
adapted based on either visual or haptic sensory feedback,
as for example in [26, 12, 13, 16]. This approach has proven
to be more robust against the aforementioned factors.

In this paper, we are interested in improving grasp quality
by exploiting visual feedback in a continuous, dense and fast
manner. This contrasts with tactile-sensor feedback, which
is valuable only at prehension time, and with feature or
edge-based visual feedback, which may be sparse, non-robust
and sometimes slow. Continuous perception of a grasping
task as for example required by techniques such as visual
servoing [7] involves the simultaneous tracking of object and
end-effector. We have previously addressed the problem of
object tracking during manipulation, where the main chal-
lenge is to cope with strong occlusions by either the robotic
or human hand [27]. For the remaining task of arm tracking,
joint encoder readings can be exploited to compute the arm
position relative to the camera. However, this information can
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Fig. 1: General overview of the system. The system minimizes the forward kinematic
error based on a single depth image from an Xtion depth sensor. (a) ARM robot [19]
observing a real scene with its depth sensor. The encoder information from the
robot is inaccurate (see (e)). (b) Depth image from Xtion. (c) Automatic per-pixel
segmentation of the depth image into robot parts and background. (d) Estimation of the
3D joint positions and back-projected into the image. (e) Encoder estimated positions
(small red spheres) and visually estimated ones (larger colored spheres), together with
the real point cloud (orange) and the (erroneous) robot model as inferred from the
joint encoders. The offset between point cloud and 3D model is due to calibration
inaccuracies and encoder errors. Estimated joint positions are linked to their encoder
counterparts with white lines. (f) Corrected 3D model after kinematic optimization on
joint position errors as described in Section VI. The offset in the arm and fingers is
successfully corrected resulting in the point cloud largely overlapping with the robot
model surface.

be erroneous due to calibration inaccuracies, sensor noise
or external forces. Moreover, under-actuated manipulators
may altogether lack such information. Therefore in many
robotic systems, there exists a gap between pro-prioception
(where the robot thinks its arm is) and reality as for example
visualized in Fig. 1. Especially for fine manipulation tasks,
this becomes a big hurdle for grasp success.

In this paper, we propose a method for marker-less robot
arm pose estimation that is inspired by work on part-based
human pose estimation [23]. We frame this problem as a
classification task that labels each pixel in a depth image as
representing a particular part of the robot or the background.
Given these pixel labels, we use a voting scheme to re-
estimate the position of each joint relative to the camera.

For the classification task we use a Random Decision



Forest (RDF) [3] that is trained offline on synthetically-
generated data. This data contains both the 3D position
of every arm joint and labels representing which part of
the robot is observed in each image pixel. The data is
robot-specific but can be easily generated for any other
robot. In quantitative experiments, we evaluate the accuracy
of the part-detection classifier. Furthermore, we show how
well the approach estimates the true arm pose given these
part detections on synthetic and real data. As opposed to
previous work, we do not follow an iterative approach in
which correspondences between the modeled and observed
arm have to be estimated and their distance minimized
in every iteration (e.g. Iterative Closest Point, ICP [1]).
Instead, we run part detection only once per frame with
a classification method that can potentially run in super-
realtime [23]. The kinematically plausible arm pose is then
found by gradient descent on the 3D joint positions. This
results in a significantly smaller computational cost than for
most ICP-based methods.

This paper is structured as follows. In the next section, we
go through related work on arm pose estimation and tracking,
and outline the contributions of the proposed method. Then
we formally define the problem in Section III. Section IV
describes how we generate the synthetic training data. Sec-
tion V introduces the robot part classification framework and
the features that are extracted per pixel. An explanation of
the joint voting scheme and the method to re-estimate a
kinematically plausible arm pose is provided in Section VI.
Finally, in Section VII we evaluate the performance of the
robot part classification as well as the arm pose estimation.

II. RELATED WORK

There exist quite an extensive body of work on (artic-
ulated, rigid or even deformable) object tracking and pose
estimation. It is beyond the scope of this paper to review
these approaches. Instead we concentrate on robot pose
estimation and tracking methods. These systems usually have
access to an initial estimate given by joint encoder readings
but are required to be real-time capable. Furthermore, the
geometry of the robot parts and their kinematic structure is
well known.

Marker-based tracking is popular in robotics as it makes
feature extraction more robust. Examples of these systems
can be found in [26, 9, 27]. Although simple, relying on
fiducial markers such as LEDs, colored spheres or Aug-
mented Reality tags has several disadvantages. First of all,
the mobility of the robot arm is constrained to have at least
one marker always in view. Secondly, every trackable joint
should contain at least one precisely located marker. And
finally, if we consider robots that are deployed in an outdoor
environment, fiducials might get covered by dust and dirt.
For these reasons, we focus on developing a marker-less
arm pose estimation system. Examples for systems like this
are presented in our previous work [10], or in [14, 12].
These approaches employ variants of the ICP [1] algorithm.
They iterate between finding a transformation that minimizes
the distance between corresponding features and actually

establishing these correspondences given a transformation. In
our previous work [10], we use oriented edge segments of the
robot arm silhouette matched with Canny edges in the camera
image. Image edges have previously been used in [6, 24].
These features are efficient to compute such that real-time
performance can be achieved. However, due to the use of
pure 2D information, this method is sensitive to background
edges or poor initialization. Krainin et al. [14] rely mostly
on 3D point information but also on sparse feature and
color matching. Finding the transformation that results in
a minimum error computed over all this information is
quite expensive. The authors estimate that a frame rate of
10Hz can be achieved with an optimized implementation.
Also, Hebert et al. [12] present an ICP-based system for
simultaneous arm and object tracking. Similar to [14], the
authors combine information from 3D point clouds, arm and
object silhouettes as well as sparse features. For efficiency,
the arm model is simplified to consist of 3 cylinders. Us-
ing this, the authors achieve real-time performance. Both
methods [14, 12] employ a Bayesian filter to smooth the
arm and object pose estimates over time. Being tracking
systems, these approaches can suffer from bad initialization
or loss of tracking, while our system estimates the robot pose
independently for each frame.

In comparison to these approaches, the method proposed
in this paper does not rely on computing dense feature corre-
spondences at every ICP iteration. Instead, for each incoming
frame we classify each pixel only once to belong to a specific
part of the robot arm. As a classifier, we use a Random Deci-
sion Forest [3] that is trained on synthetically-generated data.
Each pixel is pushed through the classification trees, to end
up in specific leaves which will cast a vote for joint locations.
Pooling these votes over all the classified pixels will result
in a set of newly estimated joint positions. Estimating the
robot’s true pose that matches the visually estimated joint
positions only requires to compute the distances between
n pairs of corresponding points where n is the number of
degrees of freedom (DoF). Correspondences do not need to
be estimated. In our approach, they are known and consist
of pairs each containing a visually estimated joint position
and the joint position from the forward kinematics.

The idea of pixel-wise part classification is inspired by the
work of Shotton et al. [23] for human pose estimation from
a single depth image. Due to the simplicity of the computed
features and the intrinsic parallelism of pixel classification,
their approach runs in super realtime on consumer hardware.
In this paper, we demonstrate that the idea of pixel-wise part
classification can be used for robust robot arm tracking. In
comparison to robot arm tracking, human pose estimation
presents the additional challenges of shape variation across
people, lack of an initial pose estimate and of an accurate
kinematic tree. However, a robotic arm tracker is required
to perform at a much higher accuracy especially for the
end effectors. Moreover, the similarity between left and right
robotic arms has to be disambiguated effectively despite the
full robot not being in view. We address these challenges
by enforcing kinematic constraints and using the initial pose



estimate. Furthermore, Shotton et al. [23] assume a given
segmentation of the human from the background. We remove
this assumption by introducing an additional background
class. We show that after training with labeled images
containing a random background, the classifier is able to
distinguish between robot parts and background.

III. PROBLEM FORMULATION

The problem addressed in this paper is to compute an
estimate ˆ✓ of the true joint angles ✓ = [✓1 . . . ✓n]T . of
a robot with n DoFs. Using the forward kinematics of the
robot, we can compute the 3D positions pj(✓), j = 1 . . . n
of each joint j relative to the robot base. Furthermore, we
know the Jacobian Matrices Jj that relate changes in joint
angles to changes in 3D joint positions:

�pj(✓) =
@pj(✓)

@✓
�✓ = Jj�✓. (1)

A column k in a matrix Jj 2 R3⇥n can be interpreted
as the contribution of the kth joint to the change of pj .
Specifically, if the moving joint k does not affect pj , its
corresponding column is 0.

In this paper we propose a vision-based part detector that
delivers 3D joint position estimates p̂j through a voting
scheme. Joint encoders provide us with an initial estimate
✓(0) that is close to ˆ✓. The problem of finding ˆ✓ can then be
posed as a least-squares problem where we want to minimize
the distance to the joint position estimates

min

✓

X

j

||p̂j � pj(✓)||2 = min

✓
||p̂� p(✓)||2, (2)

with p = [p

T
1 . . . p

T
n ]

T . Solving Eq. 2 is equivalent to
solving the inverse kinematics problem and does not have
a closed-form solution in general. Therefore, we solve this
incrementally starting from the initial joint angles ✓(0). At
each step, the desired increment is �p

(i)
= K(p̂�p(✓(i))),

with a fixed step size K. Using Eq. 1, we obtain the
kinematically feasible least-squares solution

�✓(i) = J

†(i)
�p

(i)
= J

†(i)K(p̂� p

(i)
). (3)

p

(i) 2 R3n are the 3D positions of all joints according to ✓(i),
the joint angles at iteration i. J†(i) is the pseudoinverse of
the joint Jacobians J(i)

= [J

T
1 . . . JT

n ]
T as constructed from

Eq. 1. These are dependent on the joint angles and therefore
change at every iteration. In the context of arm tracking,
Eq. 3 can also be seen as a simple proportional control law
to servo the virtual arm from its initial position into the
visually detected position. In this view, K is a controller
gain. This has been coined by Comport et al. [6] as virtual
visual servoing. In the next section, we will describe how
we generated the synthetic training data for the pixel-wise
part classifier as described in Section V. This is followed
by a section on the voting scheme that delivers the visually
detected 3D joint positions p̂.
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Fig. 2: Synthetically generated training data with different backgrounds. Due to the
variation of the neck poses during recording, images may contain one or both arms.
(a,b,c) Depth-map. (d,e,f) Ground truth robot part labels (represented with colors) and
ground truth joint positions (red circles).

IV. TRAINING DATA GENERATION

The input to our robot arm pose estimation method is a
depth image from an RGB-D sensor such as the Kinect or
Xtion. The output is an image in which each pixel is pre-
dicted to belong to a specific robot part or the background, as
well as estimates for each 3D joint position. For supervised
training of such a classifier, we need depth images with
ground truth part labels and ground truth joint positions.

In the case of robot arm pose estimation, we have precise
CAD models of each robot part and know its kinematic
structure. We can therefore avoid the tedious and inaccurate
task of collecting large amounts of real data and manually
labeling them. Instead, we render depth images of the robot
arms in varying joint configurations using a simple ray-tracer
that exploits fast intersection queries in CGAL [4]. We re-
implemented the sensor model as proposed in [11] to sim-
ulate effects such as depth shadows, disparity quantization,
smoothing or effects from the dot pattern that is projected
into the scene. As sensor noise, we use Perlin noise [18]
directly applied on the depth image. However, as pointed
out in [23], the specific choice of noise model does not have
significant influence on the accuracy of the classification. A
sample of the generated data is shown in Fig. 2.

To allow the classifier to accurately estimate the robot
pose, it needs to be trained on data that captures the
variations occurring during normal operation. In our case,
this concerns the different joint angles, the different viewing
angles upon the scene and the varying background. In this
paper, we test and demonstrate the proposed method on the
ARM robot [19]. It is a dual-arm platform consisting of
two 7DoF Barrett WAM arms and two 4DoF Barrett hands.
When including the distal joints of the fingers and dividing
the spread-angle into one joint at the root of the fingers, a
total of 30 joint axis positions need to be visually estimated.
Furthermore, the robot is equipped with an Xtion mounted
on a pan-tilt sensor head.

We use SL [20] to simulate non-periodic joint trajectories
of the two arms. Additionally at each time step, the joint
angles are perturbed with Gaussian noise using a standard
deviation proportional to their joint range. Labeled depth
images of the resulting arm poses are generated using six
different camera poses, i.e., six different sets of neck joint
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Fig. 3: Two depth image features computed at different pixels in the image. The yellow
cross indicates the pixel x for which features are computed. The red circles indicate
the relative offsets �u and �v from the pixel. (a) Features will have high values. (b)
Feature value are small due to little difference in depth at the two probes.

angles. Simultaneously, we vary the poses of some furniture
(two chairs, a table, closet and shelf) in the scene (a room)
by randomly sampling a 2D translation and a rotation around
the normal of the floor. Each sample image has a different
background. as for example shown in Fig. 2.

V. PIXEL-WISE PART CLASSIFICATION

In this section, we describe the depth image features that
we use to represent a pixel and briefly review random forest
classifiers.

A. Depth Image Features
We employ a simplified version of the depth comparison

features that were proposed in [23]. For each pixel x in the
depth image I, a feature �i is computed by

�i(I,x) = I(x+ �u)� I(x+ �v) (4)

where I(x) is the depth of pixel x in image I. If this pixel
does not contain a valid depth value, it will instead return a
large positive value dmax. The parameters of a feature �i are
the offsets �u and �v in the following referred to as depth
probes. As the maximum distance of the robot arms relative
to the camera is constrained by the kinematics, we dropped
the depth normalization of the offsets as proposed for the
original features. Fig. 3 visualizes an example in which the
same features evaluate to vastly different values dependent
on which pixel they are centered at. One feature alone
provides only a very weak signal for discriminating parts
or distinguishing foreground from background. However, a
whole set � = {�0, · · · ,�m} of such features with depth
probes randomly sampled in a window of fixed size provides
a powerful signal to describe local shape variation.

B. Random Decision Forest
Random Decision Forests have proven to be powerful, fast

and yet simple classifiers for multi-class problems. Apart
from human pose estimation [23], they have also been
used for e.g. semantic image segmentation [22] or key-point
matching [15]. In this section, we will only briefly describe
this method. For more detail, we refer to [3, 21].

A forest is an ensemble of T binary decision trees that
consist of split and leaf nodes. Each split node is defined by
one feature �i from the set � and an associated threshold
⌧ . At test time, a pixel x from image I gets pushed down

each tree. At each node the relevant feature centered at x

gets evaluated according to Eq. 4 and thresholded with the
associated ⌧ . Dependent on the result, the pixel x continues
on either the left or right branch down the tree until a
leaf node is reached. A leaf node l stores a distribution
Pl(c) over class labels c. This distribution is modeled by
a histogram computed over the class labels of the training
data that ended up at this leaf node. At test time, the random
forest will produce T class distributions per pixel x. The
final classification P (c|I,x) is given by averaging over these
distributions.

For training the ensemble of trees, the training data set Q
is split into T subsets S ⌘ Qt that may be overlapping. The
goal is to fit a decision tree to each S such that at the leaf
nodes, the distribution over the classes is sufficiently pure.
This purity can be defined in terms of different criteria like
cross entropy, gini or misclassification rate [21]. Each split
node j should divide the incoming subset Sj into subsets
SR
j and SL

j so that the gain in purity, f , is maximized.
The splitting is done according to a split function hi from
a sample set H of these functions. As long as the selected
criteria is sufficiently improved (e.g. f(Sj , hi) > fmin) and
no other stopping criteria (e.g. minimum size of the set in a
leaf, Smin) is reached, the splitting continues. Algorithm 1
outlines the training of a tree in a recursive manner.

Algorithm 1 Training of a tree in random decision forest.
1: function FITTREE(Sj , �)
2: if #Sj > Smin then

3: sample set H of split candidates hk = (�k, ⌧)
4: hi = argmaxh2H f(Sj , h)
5: SL

j = {(I,x)|�i(I,x) < ⌧}
6: SR

j = Sj\SL
j

7: if f(Sj , hi) > fmin then

8: FitTree(SL
j , �)

9: FitTree(SR
j , �)

10: end if

11: end if

12: end function

13: FitTree(S , �)

VI. JOINT VOTING

In the previous section, we showed that the part classi-
fication of a pixel depends on the leaf nodes of the RDF
that it ends up in. These nodes store distributions over class
memberships of the training data. Apart from the ground
truth part label, our training data also contains the ground
truth 3D position of each joint axis. Given this information,
we can compute the ground truth 3D offset from each
training sample to each joint. Ideally, samples that end up at
a specific leaf node should be spatially coherent. Therefore,
the distribution of 3D offsets to each joint position at this
leaf are expected to be clustered around a few modes. These
modes represent very valuable information for estimating the
offset between a pixel and a joint at test time.
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Fig. 4: Distribution of joint votes for (a) left elbow, (b) right elbow, (c) right shoulder,
(d) left finger from left arm. The robot is overlaid for visualization. Although there
are scattered votes, the main mass of votes concentrates around the true joint position.

A. Learning Joint Prediction Models at Leaf Nodes

For the problem of arm pose estimation, we use the ground
truth offsets to estimate the distribution Rlj of joint offsets
at each leaf node. We essentially follow the approach in [23]
with a few adaptations. First of all, a training sample from
a specific robot part can only cast votes for the relative
position of its own and neighboring joints. Samples from
the background can never vote for a joint. In this way, we
avoid long-distance votes that may be subject to significantly
more variation than short-distance votes. By conditioning on
the kinematic structure, we also alleviate the problem of
learning a per-joint distance threshold for discarding some
of the votes as has been done in [23]. We cluster the
resulting distributions, obtaining a set of weighted offsets
{vi

lj , w
i
lj} for each leaf l and joint j. Each v

i
lj is a 3D vector

representing the mode of the offsets in cluster i and wi
lj is

the cardinality of this cluster. In this paper, we only use
the offsets with maximum cardinality per leaf and joints:
Vlj = argmax(vi

lj ,w
i
lj)

wi
lj . The clustering is done using

mean-shift [5] with a Gaussian kernel:

p(v0
) /

X

v2Rlj

exp

✓
�||v

0 � v

b⇤
||2

◆
. (5)

As bandwidth, we adopt the value of b⇤ = 0.05m that was
determined through grid search in [23]. For initialization of
the clustering, we use bin-seeding with a voxel size of 2⇥b⇤.
Each voxel with at least one vote serves as a seed. Mean-
shift is run until convergence and clusters that are close to
each other are grouped.

B. Estimating Joint Positions

Given the learned relative votes Vlj per leaf and joint,
we can now apply these to estimate the joint positions at
test time. For each pixel in the image, we compute the
set � of features. After pushing them through the trained
random decision forest, each data point ends up at a leaf
node. For each test pixel not classified as background pixel,
the associated vote Vlj is added to the 3D position of the test
pixel. This casts a weighted vote for joint j. Fig. 4 shows
distributions Pj for four example joints after all pixels that
are classified as foreground have cast a vote.

The modes in this distribution constitute the 3D joint
position estimates p̂. Again, we use mean-shift clustering,
however this time with a kernel that takes the weights into
account:

p(p0
) /

X

(p,w)2Pj

w ⇤ exp
✓
�||p

0 � p

b
||2

◆
. (6)

We use a shared bandwidth for all joints of b = 0.07 which
is approximately the mean of the per-joint bandwidth values
that were used in [23]. For bin-seeding we use again twice
the bandwidth as voxel size. As seed threshold, we use the
mean of the weights in Pj .

VII. EXPERIMENTS

In this section, we will quantitatively evaluate the accu-
racy of the part classification as well as the joint voting
on synthetic depth images. Furthermore, we demonstrate
qualitatively the performance of the approach on real data.

A. Training Data and Parameter Settings

The performance of the system heavily depends on how
well the training data represents the true distribution of joint
angles, camera poses and scene appearance that the robot
will encounter during normal operation. Two main types of
data have been tested: training data with an isolated robot
in the scene and training data with a randomly simulated
background. The number of images generated for each of
those background types were 5710 and 4818 respectively.
A subset of 2000 pixels were sampled from the foreground
of each image. In the data set with generated background,
1000 samples per image were additionally drawn from the
background pixels.

Five trees were trained in the forest, with a minimum of
15 samples per leaf node. We selected this threshold based
on a grid search on a held-out validation set (see Fig. 6). The
number of features sampled in each node split was 100, and
the criterion to select the best split was the Gini impurity.
We used the Random Decision Forest implementation from
scikit-learn [17]. Pixels with an invalid depth value were set
to dmax=3m. Due to the large size differences of the robot
parts, for part classification we grouped together all links
belonging to one finger and the links for the wrist pitch and
yaw. For joint voting, we considered the full set of 30 joints.
This grouping is detailed in Table I which also serves as a
legend for the bar plot indices in this experimental section.

B. Classification Performance

In this section, we evaluate the performance of part
classification. Specifically, we compare the two models that
either assume a given segmentation or not. Furthermore, we
demonstrate the performance on real-worlds examples. As a
classification metric, we use the F1 score, i.e. the weighted
average of precision and recall.

1) Re-Weighting the Data Set: As our data set is quite
unbalanced regarding the different robot parts, we tested
whether the classification accuracy improves when re-
weighting the samples. Specifically, samples from smaller
parts were weighted higher than samples from larger robot
parts such that the sum of their weights is equal. We found
no significant difference in part classification. The F1 score
per part is shown in Fig. 7. Overall, the performance even
slightly degrades. Fig. 5 shows qualitative examples on
synthetic test data.



2) Classification Performance with and without Back-
ground Class: Segmentation of any kind of objects in a scene
is a very hard problem and a research topic in itself. We felt
that it is a very strong assumption to assume a segmentation
of the object to be given a-priori. Therefore, we introduced
an additional class in our training set: the background class
of which examples are shown in Fig. 2.

We evaluated the per-part and background classification
accuracy as shown in Fig. 8. In this figure, we show how
the accuracy improves with an increasing training set size.
It can be seen that increasing the size of the training set
beyond 2700 images does not significantly improve the
classification performance. The larger robot links and the
background can already be classified quite reliably with
small numbers of training images. The smaller links however,
need more data for the classifier to be able to discriminate
them. In comparison to Fig 7 that shows the classification
performance if the arm is a-priori segmented, a significant
drop in accuracy can be observed specifically for small robot
links. This can also be observed in the qualitative examples
in Fig. 9 for real data. As expected, the results that are based
on a manual segmentation look better. This suggests that a
second stage (as used for example in [8, 25]) in which the
computed segmentation is fed into the tree could improve
results with a minimal performance penalty.

C. Accuracy of Joint Position Estimates

Although the accuracy of part classification might not be
as good for some smaller robot links, the distribution of
joint votes at each leaf may still be spatially coherent. In
this paper, we are ultimately interested in the accuracy of
joint position estimates as delivered by the modes in the
joint offset distribution per leaf and joint. A useful metric
for the accuracy of these estimates is the mean average
precision (mAP) as described in [23]. It measures how
the mean area under the precision-recall curve varies with
the maximum allowed distance threshold for true positive
detections. It should be mentioned that we do not penalize
invisible joints, i.e., joints whose associated part does not
occupy more than 10 pixels in the image. For the precise
definitions of this metric we refer the reader to the original
publication. Figure 11a shows our results. A perfect joint
position estimator would always yield mAP=1.0, i.e., per
joint only the most confident vote is always inside of the true
positive distance threshold. As expected, the precision of the

TABLE I: Indices of Robot Links and associated Robot Parts

0 0 L_Forearm 1 1 L_Left_Finger_1
2 - L_Left_Finger_2 3 - L_Left_Finger_3
4 2 L_Middle_Finger_2 5 - L_Middle_Finger_3
6 3 L_Right_Finger_1 7 - L_Right_Finger_2
8 - L_Right_Finger_3 9 4 L_Lower_Wrist

10 - L_Shoulder 11 5 L_Up_Arm
12 - L_Up_Arm_In 13 6 L_Up_Wrist_Pitch
14 - L_Up_Wrist_Yaw 15 7 R_Forearm
16 8 R_Left_Finger_1 17 - R_Left_Finger_2
18 - R_Left_Finger_3 19 9 R_Middle_Finger_2
20 - R_Middle_Finger_3 21 10 R_Right_Finger_1
22 - R_Right_Finger_2 23 - R_Right_Finger_3
24 11 R_Lower_Wrist 25 - R_Shoulder
26 12 R_Up_Arm 27 - R_Up_Arm_In
28 13 R_Up_Wrist_Pitch 29 R_Up_Wrist_Yaw

Fig. 5: Three examples (one per column) for synthetically generated labeled depth
data. We can see the depth images (first row), ground truth labels (second row), and
the pixel-wise part classification using unweighted (third row) and weighted (fourth
row) training data. Please note that we collapsed each finger and wrist into one link
only.
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Fig. 6: Average classification accuracy over all links using different settings for
minimum number of samples per leaf. Parameter search done on a held-out validation
set.

tree requiring segmented data is better than the one of the
tree that is trained without pre-segmentation. However, the
decrease is not as big as for the classification. In Figure 11b
this average precision is broken down per joint, for a distance
threshold of 0.05 meters. Joints of smaller links show again
a lower performance than the joints of larger links. Fig. 10
shows an example of the joint position estimates on real data.
These estimates could now be used to find kinematically
consistent robot arm poses as described in Sec. III. Fig. 1
f) shows an example re-estimation of the robot arm pose
given the estimated joint positions. We additionally enforced
joint limits and re-weighted the error term in Eq 2 with the
confidence values of the estimates which proofed more robust
against noisy estimates (see video at http://youtu.be/
xXkV6UcMCqw). Please note that this is the first place in the
framework where we make use of the information from the
joint encoders. For all the other parts, i.e. classification and
joint position estimation, we only used the offline-trained
random decision forest and the learned voting distributions
per leaf and joint.

http://youtu.be/xXkV6UcMCqw
http://youtu.be/xXkV6UcMCqw
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Fig. 9: Results of robot part classification on three real data examples (one per row). Column-wise we can see, (a) the real depth data, (b) a manual segmentation provided to a
tree trained on pre-segmented data, (c) the result of this tree. In the following columns, we see results from a tree trained on unsegmented data with (d) 900 images, (e) 2700
images and (f) 4336 images. While the results in (c) require segmentation of the data, (d,e,f) do not. Note that the label colors are different in (c) and (d,e,f) due to the inclusion
of the background label.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.2

0.4

0.6

0.8

1

Robot Links

F1
Sc

or
e

Uniform Weights Re-Weighted

Fig. 7: Classification accuracy per part for Random Decision Forest trained with
unweighted or re-weighted data.
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Fig. 8: Classification accuracy per part for Random Decision Forest trained on images
with randomized background. The accuracy for different sizes of training data is shown.

VIII. CONCLUSIONS

We have presented a method for estimating the pose
of robotic manipulators from a single depth image. It is
based on a pixel-wise part classification that has to be run
only once per frame. Our approach is robust to sensor or
feature noise (unlike edge-based systems) and potentially
runs in super-realtime. Given this classification, we use a

a b

c d

Fig. 10: Joint estimation results on real data. The first column shows the real point
cloud in orange, a visualization of the robot according to the joint encoder data and
the joint estimates as colored spheres. The erroneous encoder data is visualized by
the lack of overalp between point cloud and robot model surface. The spheres are
color-coded according to the confidence of the vote (the warmer the color the more
confident the vote). The results are mostly coherent with the real data, apart from
largely occluded areas like the upper left finger in (b) or the two missing fingers in
(c). Fingers have much lower confidence than the wrist or elbow because the amount
of pixels voting for them is much lower. By enforcing kinematic constraints, the final
arm pose estimation is robust against these erroneous detections (see video at http:
//youtu.be/xXkV6UcMCqw.)

voting scheme to visually estimate 3D joint positions. These
can then be used to adjust the robot pose as estimated
from the joint encoder readings so that it is kinematically
plausible and coherent with the recorded visual evidence.
Pose estimation remains independent per frame, which makes
this approach also useful as an initialization or resetting
method for tracking systems like [14]. The visually estimated
joint positions can be also a very valuable source for multi-
feature trackers like [12]. Our current implementation is a
proof-of-concept using an out-of-the-box random decision
forest implementation and trivially-implemented feature ex-
traction, resulting in non-realtime performance. However, the
super-realtime visual estimation of the human skeleton on

http://youtu.be/xXkV6UcMCqw
http://youtu.be/xXkV6UcMCqw
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Fig. 11: Joint estimation performance. The top figure shows the average precision (area
under precision-recall curve) for each joint, computed with a maximum allowed error
of 0.05 meters. The lower one shows how the mean average precision over all the
joints varies with an increasing maximum allowed distance from 0.01 to 0.2 m.

an XBOX 360 (hardware from 2005) proofs that realtime
performance should be easily achievable.

As can be seen e.g. in Fig. 9, the RDF that does
not require pre-segmented images is able to successfully
compute foreground-background segmentations. However,
on pre-segmented data, the other forest performs better on
part segmentation. As future work, we want to investigate
whether multiple layers of random forests can exploit this
fact. Similar in spirit to [8, 25], the part segmentation output
of our random forest can be fed into a second random
forest that exploits the segmentation input to compute more
accurate joint positions. Additionally, we plan to integrate
an object tracker (e.g. [27]) to track the essential elements
of a grasping action. Continuous, robust tracking of both
manipulators and object would allow us to apply more
precise grips, manipulate moving objects and detect typical
problems such as object slippage.
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