
Synchronizing Machine Learning Algorithms, Realtime Robotic Control
and Simulated Environment with o80

Vincent Berenz, Felix Widmaier, Simon Guist, Bernhard Schölkopf and Dieter Büchler

queuing a command requesting the degree of freedom 1 to reach the value
100 over 2 seconds, overwriting any previously running commands

… requesting to then reach the value 200 at 10 units per millisecond

… requesting to then reach the value 300 at the 10000th iteration of the backend

… requesting to then reach asap the value 301

writing the queue of commands to the shared memory for execution

Flexible command system

Bursting mode

In bursting mode, the backend iterates upon requests by the frontend.
Typically this is used for the control of simulated robot running accelerated time.
This allows the simulation to synchronize with the control algorithm.

example:
the control algorithm computes the commands to be sent, then request the
simulation to perform 10 iterations as fast as possible

Reading data and synchronizing

flexible methods for retrieving
observations and
synchronizing with the
backend

example:
the frontend runs at 1/10th of the
backend’s frequency

o80 is a software for:

- managing inter-processes data streams exchange
- inter-processes synchronization

It is templated realtime safe C++, with automated
generation of Python bindings.

Open source:
https://github.com/intelligent-soft-robots/o80

https://ei.is.mpg.de

Deployment
1. develop the classes for the driver (specifies input and output to

robot) and the joints (information related to the robot state)

2. create the Python bindings at compile time

3. start the (realtime safe) o80 backend in Python

4. interact with the backend via a frontend (in Python)

o80 backend
real time C++

o80 shared memory

observation history
…
…

commands
…
…

client control
o80 frontend Python

logger
o80 frontend Python

robot

re
qu

es
tin

g
ba

ck
en

d
to

 it
er

at
e

(if
 b

ur
st

in
g

m
od

e)

used to retrieve data and
to synchronize with the

backend

rotating memory
(~ 30 minutes)

processes running at
different frequencies

